
 1 

Relationship of the Reproducibility of Multiple Variables 2 

among Global Climate Models 3 

 4 

Kazuaki NISHII*, Takafumi MIYASAKA, Hisashi NAKAMURA 5 

Department of Earth and Planetary Science, University of Tokyo, Tokyo# 6 

Yu KOSAKA 7 

International Pacific Research Center, University of Hawaii, Honolulu, Hawaii, USA 8 

Satoru YOKOI, Yukari N. TAKAYABU 9 

Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa 10 

Hirokazu ENDO 11 

Meteorological Research Institute, Tsukuba 12 

Hiroki ICHIKAWA 13 

Graduate School of Environmental Studies, Nagoya University, Nagoya 14 

Tomoshige INOUE 15 

Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 16 

Kazuhiro OSHIMA 17 

Faculty of Environmental Earth Science, Hokkaido University, Sapporo 18 

Naoki SATO 19 

Tokyo Gakugei University, Tokyo, and Japan Agency for Marine-Earth Science and 20 

Technology, Yokohama 21 

and 22 

Yoko TSUSHIMA 23 

Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK 24 

Submitted March 18, 2011, revised 25 

 26 

------------------------------------ 27 

* Corresponding author: Kazuaki Nishii: Research Center for Advanced Science and 28 

Technology, University of Tokyo, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 29 

153-8904, Japan. Email: nishii@atmos.rcast.u-tokyo.ac.jp. 30 

                                                
#Current affiliation: Research Center for Advanced Science and Technology, University of Tokyo. 



 2 

 31 

 32 

Abstract 33 

 34 

Numerous efforts have been made for evaluating the performance of global climate 35 

models with such expectation that those models with higher reproducibility of the current 36 

climate should provide more reliable projections of climate changes into the future. 37 

Attempts have been made to define a single general metric through which the overall 38 

performance of a global climate model can be assessed. On the basis of general 39 

metrics defined through several techniques of multivariate analysis, the present study 40 

compares global climate models from a viewpoint of their reproducibility of 41 

climatological-mean fields of multiple variables. The analyses indicate that a 42 

reproducibility of a particular variable is not necessarily independent of that of others, 43 

which may bring redundant information into a general metric. The model reproducibility 44 

in upper and mid-tropospheric temperature and lower-tropospheric humidity, for 45 

example, tends to be anti-correlated with that in upper and mid-tropospheric humidity. It 46 

is argued that attention has to be paid to this kind of trade-off relationships among some 47 

variables and resultant redundancy in synthesizing multiple metrics. A possibility is 48 

suggested that an arbitrary selection of variables can yield some redundant information 49 

of variables. The redundancy is, however, found to exert no serious influence on the 50 

quality of a general metric as long as it is based on the sufficient number of variables. In 51 

our attempt to evaluate the climate models by introducing general performance metrics 52 

with reduced redundancy of variables, the overall model ranking is found rather 53 

insensitive to the specific definition of the metric. 54 

55 
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1. Introduction 56 

Quantitative projections of future climate changes depend more or less on numerical 57 

climate models. A multi-model ensemble (MME) is known to outperform individual models 58 

in reproducing the current climatic state owing to a tendency for their biases to cancel each 59 

other (e.g., Knutti et al. 2010). The MME future projection has therefore been believed to be 60 

more reliable than the corresponding projection based on a single model, as exemplified in 61 

the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4; 62 

Solomon et al. 2007). In AR4 a simple algebraic average of the outputs from more than 20 63 

global climate models that participated in the World Climate Research Programme’s 64 

(WCRP’s) Coupled Model Intercomparison Project Phase 3 (CMIP3; Meehl et al. 2007) is 65 

used as the best guess for the future projection. The cancellation of model biases is, 66 

however, not necessarily perfect. For example, a group of the CMIP3 models in which a 67 

particular parameterization scheme is commonly adopted, say, for cumulus convection may 68 

suffer from a common bias, suggesting that model biases are not necessarily distributed 69 

randomly. Even if model biases were distributed randomly, the number of available models 70 

would be unlikely sufficient for their perfect cancellation (e.g., Knutti et al. 2010). In fact, the 71 

effective number (or degrees of freedom: DOFs) of the CMIP3 models has been estimated 72 

to be only between five and ten (Jun et al. 2008a, 2008b; Knutti et al. 2010; Pennell and 73 

Reichler 2010). In other words, the amount of information provided as an ensemble of 74 

those models may be less than what would be expected under the assumption that all the 75 

models were mutually independent1.  76 

Spatial similarity of biases in such a model variable as climatological-mean surface air 77 

temperature (SAT) is often used as a measure of independency among the models. In 78 

addition to the insufficient effective number of models as discussed above, the effective 79 

                                                
1 Annan and Hargreaves (2010) showed that in a paradigm of statistically indistinguishable ensemble, 
CMIP3 models are well distributed in a sense that observations can be considered as a member of the 
CMIP3 ensemble. 
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number of these measures may also be limited. In fact, Yokoi et al. (2011) have 80 

demonstrated that a performance metric for a given variable (hereafter referred to as 81 

“variable metric”), which quantifies the similarity of its model-simulated distribution to its 82 

observational counterpart, may be correlated with other variable metrics under the 83 

constraint, for example, of thermal wind balance that relates circulation and thermal fields. 84 

Efforts have been made to define a single general performance metric (hereafter referred 85 

to as “general metric”) into which various aspects of model performance are incorporated 86 

(Gleckler et al. 2008; Reichler and Kim 2008). This general metric can be used for 87 

determining weights for individual models to synthesize their outputs for defining an optimal 88 

MME (e.g., Murphy et al. 2004). Usually in defining a general metric, reproducibility of 89 

various variables is estimated separately on the basis of variable metrics before summed 90 

up, but what variables to be chosen is rather arbitrary. In fact, Knutti et al. (2010) pointed 91 

out “there is virtually an infinite number of metrics that can be defined”. Furthermore, Yokoi 92 

et al. (2011) argued that a general performance metric might be marred if seriously biased 93 

variables are incorporated into it. Furthermore, adding a new variable metric to a general 94 

metric may not necessarily lead to an effective increase in the information included in the 95 

metric, if the new variable is linked closely to any of the variables that have already been 96 

incorporated into the metric. In this case, the addition will introduce some redundant 97 

information, or even some bias, to the new general metric. In any case, “we currently have 98 

no basis for assigning unequal weights for any variables” (Sexton and Murphy 2003) in 99 

defining a general metric. 100 

This study is motivated by Gleckler et al. (2008), who argued “it might be fruitful to 101 

explore a wide range of metrics, rather than striving for a single index of overall skill, and 102 

then to use some objective method to reduce redundant information (e.g., SVD)”. We 103 

examine linkages among variable metrics for the CMIP3 models by applying several 104 

techniques of multivariate analysis. We identify positively-correlated variable metrics in 105 
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particular variable groups and other metrics showing trade-off reproducibility of variables. 106 

We then propose several definitions for general metrics in our attempt to reduce 107 

redundancy. 108 

The metrics defined in the following sections are based only on the climatological-mean 109 

state. It should be pointed out that they do not necessarily capture every aspect of the 110 

performance of a climate model, since its reproducibility of the mean state and that of 111 

natural variability around it do not necessarily correlate positively (Gleckler et al. 2008; 112 

Santer et al. 2009). Another possible defect of our metrics arises from their rather 113 

straightforward definition. It has been pointed out that most of such straightforward metrics 114 

as area-mean biases and root-mean-square errors for the present day climate do not 115 

necessarily be applicable well to future projections (Whetton et al. 2007: Abe et al. 2009; 116 

Girogi and Coppola 2010; Knutti et al. 2010). Recently, efforts have been devoted to finding 117 

metrics that can connect current climate reproducibility reasonably to future projection (Hall 118 

and Qu 2006; Boe et al. 2009; Shiogama et al. 2011), where these metrics are expected to 119 

reduce uncertainty in future projections based on ensembles of climate models. In addition, 120 

a new paradigm of a statistically indistinguishable ensemble has been proposed (Annan 121 

and Hargreaves 2010), which differs from the particular paradigm we adopt here that 122 

ensemble members are assumed to be distributed around the true climate. Despite the 123 

defects mentioned above, we nevertheless use our metrics because our main goal is to 124 

explore inter-variable relationships of multiple metrics. 125 

 126 

2. Data and analysis methods 127 

2.1 Climate models and observed data 128 

The multi-model dataset of the 20th Century Climate in Coupled Models (20C3M) 129 

experiment in CMIP3 (Meehl et al. 2007) is utilized in this study. In Table 1, the 22 variables 130 

used for our analysis are listed with their abbreviations for reference. For each of the 131 

Table 1 
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variables, model output data from 24 climate models are compared with observational data 132 

whose source and available periods are also listed in Table 1. Most of the variables are 133 

obtained from the Japanese 25-year reanalysis (JRA-25) of the global atmosphere (Onogi 134 

et al. 2007). We have verified that the usage of the European Centre Medium-Range 135 

Weather Forecast 40-yr Reanalysis (ERA40) data set (Uppala et al. 2005) in place of 136 

JRA-25 yields no substantial changes in the results presented below. We define a variable 137 

metric for the i-th model (i = 1, ··· , I) and the j-th variable (j = 1, ··· , J) as 138 

!!" = !
!!

!
!"! !!(!!"#$!!!"#$)!

!
!

!"
!    (1) 139 

where σj denotes standard deviation of the observed interannual variability of the j-th 140 

variable, wl a local area weighting factor at the l-th grid point (l = 1,···, L), W =Σwl, and mijkl 141 

and oijkl are the simulated and observed climatological means of the j-th variable for the k-th 142 

calendar month (k = 1,··· ,12), respectively. !!"!! !  is equivalent to the Climate Prediction 143 

Index (CPI; Murphy et al. 2004) for the i-th model. Since available periods for observed 144 

OLR and SWTOA are too short for a robust estimation of their interannual variances (Table 145 

1), the estimation was based on the JRA25 data. A shortcoming of such metrics as ours 146 

that include mean square errors is that they cannot incorporate the signs of model errors. 147 

This may artificially reduce the effective variable number estimated in our analysis. 148 

The inter-model variance in C is not necessarily comparable in magnitude among the 149 

variables. For example, standard deviations are large in upper and mid-tropospheric 150 

temperature and specific humidity fields (Fig. 1). In section 3, variances in C have been 151 

standardized with inter-model standard deviations, to explore relationships among variable 152 

metrics. However, no standardization has been applied to C in section 4, where we discuss 153 

general performance metrics that have to be related to the model reproducibility of 154 

variables and therefore their inter-model variances must be explicitly incorporated.  155 

 156 

2.2 Multivariate analysis techniques 157 

Fig. 1 
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In this subsection we briefly introduce three multivariate analysis techniques applied to C 158 

in the present study. One of them is a cluster analysis. As in Yokoi et al. (2011), we apply a 159 

cluster analysis to a set of variable metrics, to identify several groups of variable metrics 160 

that exhibit similar behaviors. We adopt so-called Ward (1967) method, which is based on 161 

the Euclidian distance between any pair of clusters in the phase space.  162 

Unlike the cluster analysis, a principal component analysis (PCA), or an empirical 163 

orthogonal function (EOF) analysis, seeks for basis vectors that can be regarded as new 164 

“variable” metrics each of which can represent behaviors of multiple variable metrics. 165 

Before performing a PCA the RMS biases of individual variables within the model ensemble 166 

have been subtracted from the CPI matrix C defined in (1): 167 

!! = !′!" = !!" − !
! !!"!

! .   (2) 168 

The resultant matrix C’ can be decomposed in PCA into a pair of orthogonal matrices:  169 

!! = !!!!! , !"  !′!" = !′!"!
! !′!" ,   (3) 170 

where U′ = {U′ir}, V′ = {V′jr} and r = 1,···,R (R = min(I,J)). In this factorization, the i-th row 171 

vector of C′ (a set of variable metrics for the i-th model) is represented by a linear 172 

combination of the R column vectors in V′, called basis vectors or EOFs, with the 173 

corresponding i-th row vector of U′ that represents a set of their coefficients that scores 174 

reproducibility of the i-th model. 175 

  As in the case of PCA, non-negative matrix factorization (NMF; Lee and Seung 1999) 176 

decomposes the CPI matrix C in (1). Unlike PCA, however, NMF decomposes C directly:  177 

!~!!!,     (4) 178 

taking advantage of the fact that every element of C is nonnegative. In (4), P and Q are 179 

nonnegative I×R and J×R matrices, respectively, but not necessarily orthogonal. Here, a 180 

positive integer R satisfies R < I J (I + J)–1.  181 

Figure 2 schematically compares basis vectors obtained through (a) PCA and (b) NMF 182 

applied to a hypothetical two-variable metric data set. The origin of the PCA basis vectors is 183 

Fig. 2 
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situated at the center of balance between the two model groups that corresponds to the 184 

RMS bias in (1). The leading PCA vector is in the direction of the maximum variability of the 185 

metrics, and the second PCA vector must be orthogonal to the leading vector. In contrast, 186 

the NMF basis vectors are not orthogonal mutually. In a hypothetical situation where there 187 

are only two groups of climate models as in Fig. 2, the two NMF basis vectors are inclined 188 

to point those groups. In the particular phase space illustrated in Fig. 2, a model with lower 189 

reproducibility of the current climatic state tends to be more distant from the origin2. The 190 

particular distance can therefore be regarded as a general performance metric, and the 191 

projection of the state vector of a given model onto a NMF basis vector can thus be 192 

considered as a new variable metric that comprises multiple variables showing similar 193 

behaviors. A general performance metric thus defined should be subject to a certain degree 194 

of redundancy, which can nevertheless be reduced in synthesizing these projections. This 195 

contrasts with the PCA vectors that do not necessarily point the origin of the phase space 196 

but may rather represent trade-off reproducibility among the variables. 197 

While some suggestions have been made on how many basis vectors should be retained 198 

for PCA, no objective criterion has been proposed thus far for determining R in NMF. In fact, 199 

Schlink and Thiem (2009), who applied NMF to identify dominant patterns of atmospheric 200 

variability, determined R empirically after several trials in varying R. While relative 201 

importance of a given set of PCA basis vectors can be assessed with the corresponding 202 

eigenvalues, the order of NMF basis vectors cannot be uniquely determined. With this 203 

peculiarity of NMF, all the basis vectors should be treated evenly. 204 

 205 

3. Relationship among multiple variable metrics 206 

3.1 Cluster analysis 207 

Figure 3 shows a dendrogram based on our cluster analysis that was applied to a set of 208 

                                                
2 Here we assume that both internal climate variability and observational errors are much smaller than 

the model bias, as is likely the case for most of the models. 

Fig. 3 
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C after standardizing inter-model variances. We adopted a stopping rule of Calinski and 209 

Harabasz (1974). Though not particularly distinct, the maximum of the pseudo-F function in 210 

their definition, which is the ratio of the inter-cluster variance based on the means of the 211 

individual clusters to the mean of the intra-cluster variances, was found to be realized when 212 

the model members were categorized into two main clusters. This result of our cluster 213 

analysis may be attributable to the artifact of RMSE-based metrics where the signs of 214 

biases are neglected. One of the two main clusters consists of upper and mid-tropospheric 215 

temperature (T300, T500, T600, T700) and lower-tropospheric humidity (Q850), whose 216 

combination may be understandable except for humidity. The other main cluster, which 217 

consists of the 17 other variables, comprises several sub-clusters. One of them consists of 218 

lower-tropospheric temperature (T850), SAT and sea surface temperature (SST), whose 219 

close association in the climate models is understandable. However, interpretation of some 220 

of the other sub-clusters is not necessarily straightforward. It seems counterintuitive, for 221 

example, that model biases in surface sensible and latent heat fluxes are not closely 222 

related to those in either SAT or SST. As argued by Yokoi et al. (2011), the mixture 223 

between variables that can yield model biases in their global-mean values (e.g., SLP and 224 

temperature fields) and those that cannot (e.g., meridional wind velocity) may complicate 225 

the interpretation. 226 

 227 

3.2 PCA 228 

We applied PCA to the same set of C as above through the eigenvalue decomposition of 229 

its correlation matrix (Fig. 4). Fractions of the total variance explained by these modes are 230 

36%, 21%, 9%, 7%, 6% and 5%. Thus more than 80% of the total variance is explained by 231 

the six leading modes, which means that most of the information of the 22 variables can be 232 

accounted for only by these six modes. The first mode represents the overall model 233 

performance (Fig. 4a). Models that earn large negative scores of this mode tend to show 234 

Fig. 4 
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high reproducibility in 16 out of the 22 variables but not for upper and mid-tropospheric 235 

temperature (T300, T500, T600, T700), lower-tropospheric humidity (Q850) and cloud 236 

cover (Fig. 4d). Meanwhile, reproducibility of most of these six variables is measured by the 237 

second PCA mode (Fig. 4b), and its large negative score represents high reproducibility of 238 

those variables (Fig. 4e). In contrast to these two leading modes, the higher modes 239 

represent trade-off relationships in reproducibility among the 22 variables (Figs. 4c and 4f), 240 

and therefore none of these modes alone can be used as a measure of the overall 241 

performance of a given model. The trade-off relationships found in the analysis by Yokoi et 242 

al. (2011) and ours may suggest that one should not focus too much on the model 243 

reproducibility only of a particular aspect, in order to avoid its over-tuning at the expense of 244 

other aspects. We should keep in mind, however, that the trade-off relationships 245 

represented by the higher modes tend to be more or less overemphasized due to an artifact 246 

of PCA (Lee and Seung 1999). 247 

 248 

3.3 NMF 249 

Our cluster analysis implies that the DOFs of the variable metrics of C may be only two, 250 

while the six leading modes are retained for our PCA. In recognition of this uncertainty, we 251 

repeatedly applied NMF to the standardized C, changing R from two to six. Figure 5 252 

presents the results for R = 2 as a typical example. In Fig. 5, a small value in Pir suggests 253 

high reproducibility of the i-th model in a particular aspect represented by the r-th column 254 

vector of Q. The first NMF mode for R=2 measures the reproducibility of upper and 255 

mid-tropospheric temperature and lower-tropospheric humidity, whereas that of upper and 256 

mid-tropospheric humidity is scored effectively by the second mode. The grouping of the 257 

variables into the two NNF modes is overall consistent with the corresponding grouping in 258 

our cluster analysis and PCA. The characteristic of the first mode for R=2 is fairly robust as 259 

it is reproduced in the second mode for R=3 (not shown). A positive score of the first NMF 260 

Fig. 5 
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mode with R=3 corresponds to lower reproducibility of upper and mid-tropospheric humidity, 261 

T850, SAT and SST. The third mode implies better reproducibility of temperature fields in 262 

those models with large Q values at the expense of that of other variables. 263 

 264 

4. Attempts for synthesizing multiple variable metrics for reduced redundancy 265 

Several methods have been proposed for synthesizing multiple variable metrics, but 266 

some of them, including an algebraic mean of the variable metrics, are rather ad hoc. 267 

Utilizing the multivariate analyses discussed above, we make several attempts to reduce 268 

redundant information in a set of multiple variable metrics in defining a scalar metric as a 269 

measure of model’s general performance (“general metric”), as in Yokoi et al. (2011). In our 270 

attempts, we try to evaluate the overall performance of the i-th model with R (r = 1, 2, ···, R) 271 

new variable metrics defined as: 272 

!!" =
!!"! !!"
!!"!

,      (5) 273 

where ωjr signifies the weighting for the r-th metric that has been defined through one of the 274 

analysis methods discussed above. For the cluster-analysis-based CPI, ωjr = 1 if the j-th 275 

variable belongs to the r-th variable cluster or ωjr = 0 otherwise. For the NMF-based metrics, 276 

ωjr = Qjr. A new general metric for the i-th model with reduced redundancy may thus be 277 

given as 278 

!! =
!!"
!!

! .     (6) 279 

Our cluster analysis of the unnormalized C gives us R = 3, because the pseudo F reaches 280 

its maximum for three main clusters, whereas PCA for the unnormalized C suggests R = 4, 281 

because the four leading modes explain more than 80% of the total variance represented 282 

as the trace of the covariance matrix of C. On the basis of these results R = 3 and 4 are 283 

tested for our NMF, but their difference is so small that only results for R = 3 are discussed 284 

in the following. 285 

We also utilize total energy (TE; Talagrand 1981), which has been used as a norm for 286 
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evaluating forecast errors. In our practice, TE is integrated over the global domain A:  287 

!" = !
! {!! + !! + !!

!!
!!"!!!!(

!!!
!!
)!! !!

!!!!
!!!}!"!#,   (7) 288 

where primes denote deviations from the observations, u westerlies, v southerlies, Cp 289 

specific heat at constant pressure, L latent heat, R gas constant, T temperature, Tr 290 

reference temperature, and q specific humidity. In (7), the vertical integration was 291 

performed between the p = 200 and 1000 (hPa) levels. No evaluation was made, however, 292 

for the term that includes surface pressure (ps), which is not available in some of the CMIP3 293 

model output. Strictly speaking, TE cannot be regarded as a general metric for model 294 

performance, since solar and terrestrial radiations, surface heat fluxes and cloud cover are 295 

all excluded from it. It can nevertheless offer a physically meaningful means for 296 

synthesizing dynamical and thermal variables in defining a metric. As another general 297 

metric, we also adopt the same definition as the Model Climate Performance Index (MCPI; 298 

Gleckler et al. 2008), which is a simple summation of the conventional variable metrics but 299 

with the variable metrics listed in Table 1. 300 

Figure 6 compares the model rankings based on the aforementioned general metrics. 301 

Models that are evaluated at higher rankings based on a particular general metric tend to 302 

be ranked at higher positions based on the other general metrics. Although the TE-based 303 

model ranking tends to deviate slightly from those based on the other metrics, the overall 304 

consistency among the model rankings based on the various general metrics implies that 305 

the reproducibility of the dynamical variables is more or less related to that of the physical 306 

variables. 307 

Figure 7 shows the numbers of variable metrics that are ranked as the top five (squares 308 

with solid line) and bottom five (triangles with dotted line) among the 24 CMIP3 models. 309 

The models are listed in descending order according to the CPI-based general metric. The 310 

figure indicates an overall tendency for models with higher (lower) ranking based on the 311 

CPI-based general metric to exhibit higher (lower) reproducibility with respect to a greater 312 

Fig. 6 

Fig. 7 
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number of variable metrics. For example, ECHAM5/MPI-OM, the best model based on the 313 

general metric, is ranked among the top five of the 24 models with respect to as many as 314 

15 variable metrics, while only a single variable metric ranks this model 315 

(ECHAM5/MPI-OM) among the bottom five. In contrast, the three models that earn the 316 

lowest scores of the general metric are not ranked among the top five with respect to any of 317 

the variable metrics. Meanwhile, such models as GFDL-CM2.1, MRI-CGCM2.3.2, 318 

CSIRO-Mk3.5 and GFDL-2.0 earn the top five scores in as many variable metrics as the 319 

higher-ranked models based on the general metric do so. Those models exhibit, however, 320 

the relatively low reproducibility in air temperature and humidity, whose inter-model 321 

variances tend to be large (Fig. 1). This is hinted at in Figs. 5b and 5d, where these models 322 

earn high scores in P. Our results suggest that a general metric based on an unnormalized 323 

matrix C may likely be influenced substantially by the reproducibility of variables with large 324 

inter-model variances. 325 

 326 

5. Discussion and conclusions 327 

In this paper, we have compared several multivariate analysis methods that can be used 328 

for extracting relationships among variable metrics. While details are dependent of specific 329 

analysis methods, there are nevertheless some common features in the resultant grouping 330 

of the variable metrics. Some groups of the metrics obtained as the leading PCA or NMF 331 

modes are characterized by variable metrics whose inter-model variances are large and 332 

can thereby score the overall performance of the models. In contrast, other groups 333 

represent trade-off relationships among the variables in their model reproducibility.  334 

We have also proposed several methods to reduce redundancy in variable metrics 335 

before defining a general metric that scores the general performance of climate models. 336 

Model rankings are, however, rather insensitive to the particular definition of the general 337 

performance metric (Fig. 6). These results suggest that (i) a general performance metric 338 
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that consists of a sufficiently large number of variable metrics is unlikely to be influenced 339 

significantly by the redundancy of variables, and (ii) good models tend to show high 340 

reproducibility in various aspects, at least based on the metrics used in this study (Fig. 7). 341 

Basically our metrics are based on RMSE from the observed climatology3, even in the 342 

estimation with the total energy norm. Thus one may consider that this similarity in the 343 

definition of the metrics based on CPI, MCPI and TE may lead to the similarity among the 344 

model rankings based on those metrics as shown in Fig. 6. We have compared the model 345 

ranking based on CPI with those on the pattern correlations and RMSE of global-mean 346 

biases (Fig. 8). Although the similarity among those three rankings is weaker if compared to 347 

that among the rankings shown in Fig. 6, there is still a tendency that those models with 348 

higher rankings based on CPI tend to be ranked also in higher positions based on the 349 

pattern correlation and global-mean biases.  350 

As noted in the introduction, metrics that are related to future projections have been 351 

sought (Hall and Qu 2006; Boe et al. 2009; Shiogama et al. 2011). Though it is beyond the 352 

scope of the present study, it will be valuable to assess briefly whether the simple metrics 353 

defined in this study may have any relevance to future projection. Following Abe et al. 354 

(2009), we compared inter-model similarity of present-day climate simulation with that of 355 

projected future change. The inter-model similarity is evaluated between possible pairs of 356 

the CMIP3 models based on CPI (Fig. 9a) or single variable metrics (Fig. 9b). The future 357 

change is based on the difference between the averages for the two periods, one for 358 

2070-2099 of the A1B scenario experiment and the other for 1970-1999 of the 20C3M 359 

experiment. More specifically, the former average is assigned to mijkl and the latter to oijkl in 360 

(1). σj is based on the current climate. Figure 9b summarizes the correlation in the 361 

inter-model similarities between the present-day climate and projected future change 362 

                                                
3 Note that RMSE-based metrics provide us with mixture of information on the similarity in model–simulated 
and observed climatological-mean fields of a given variable from multiple perspectives: the global-mean bias 
and pattern similarities with respect to spatial distribution and local amplitude. 

Fig. 8 Fig. 9 
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based on the same scatter plot as in Fig. 9a but based on respective variable metrics. The 363 

figure indicates fairly high correlation between current climate and future change projection 364 

based on single variable metrics, especially in OLR, SWTOA and Prec, except for 365 

tropospheric temperatures. The high correlations of variable metrics suggests that a pair of 366 

models that simulate similar mean fields for the present-day climate tends to yield similar 367 

future projection in the mean field, as long as the similarity is measured by those variables. 368 

The correlation lowers if these variables are synthesized in the form of CPI (0.21), while the 369 

correlation is improved slightly (0.31) if temperature metrics are excluded. This modest 370 

correlation implies that uncertainty that could emerge in the future projection may not be 371 

well constrained by using a synthesized metric that consists of multiple aspects, even if 372 

each of the metrics shows high correlation between the present-day climate and future 373 

projection. In our analysis, high correlations are found in some variable metrics, but the 374 

physical reasoning has not been uncovered. 375 

Previous studies have pointed out that the CMIP3 models are not mutually independent 376 

and their effective number is only between five and ten (Jun et al. 2008a, 2008b; Pennell 377 

and Reichler 2010). The estimation of the effective model number by using PCA is 378 

equivalent to that of the number of effective metrics or measures of inter-model similarity, 379 

since the numbers of nonzero eigenvalues of inter-model and inter-variable covariance 380 

matrices of C are identical. As there are infinite ways to define metrics, incorporating 381 

additional metrics may increase the effective model number. While precise estimation of 382 

the effective numbers of models and variables may be of little worth, it will be worthwhile to 383 

deepen our understanding of inter-model and inter-metric relationships. In section 3, 384 

linkages were revealed among different variable metrics for the CMIP3 models. Some of 385 

them seem to reflect physical relationships among the variables or in parameterization 386 

schemes, while others may be mere artifacts of constraints among the variables by a 387 

particular analysis method. Further investigation is needed to identify the origins of the 388 
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revealed relationships. In section 4, we attempted to reduce redundancy among the 389 

variable metrics in quantifying general performance of the CMIP3 models. Still, no attempt 390 

has been made for avoiding inter-model dependency that may distort the uncertainty (i.e., 391 

PDF) of the future projection in the ensemble of the CMIP3 models. 392 

In the present study, we have focused on the reproducibility of the climatological-mean 393 

fields, whereas most of the studies on model reproducibility also focus on time-variability 394 

and long-term trends. From a regional viewpoint, however, assessing the model 395 

reproducibility of atmospheric phenomena, including tropical and midlatitude cyclones and 396 

large-scale teleconnection patterns, is necessary for reliable projection of their future 397 

changes. Several studies applied process-oriented performance metrics to the CMIP3 398 

models (e.g. Yokoi and Takayabu 2009; Nishii et al. 2009). Especially, Kosaka and 399 

Nakamura (2011) found that models with better reproducibility of the climatological-mean 400 

fields tend to show better reproducibility of the most dominant summertime anomaly pattern 401 

over the western North Pacific. Exploring the relationships among process-oriented 402 

regional metrics and global metrics based on climatological-mean fields and their trends will 403 

be valuable in improving global climate models. 404 
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models. The similarity is measured by CPI that has been evaluated without specific 621 

humidity. The future change is based on the difference between the averages for the two 622 

periods, one for 2070-2099 of the A1B scenario experiment and the other for 1970-1999 of 623 

the 20C3M experiment. A line represents a regression line. (b) Correlations between the 624 

inter-model similarity of the 20c3m experiment and that of the future change, which is 625 

based on the same scatter plots as in (a) but for variables used in this study. The last one 626 

“CPI w/o T” denotes CPI evaluated without T300, T500, T600, T700, and T850. 627 
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Table 1  List of used variables and reference dataset. JRA25 is for Japan Re-Analysis 677 

(Onogi et al. 2007). HadSST2 is for the Second Hadley Centre Sea Surface Temperature 678 

dataset (Rayner et al. 2006). ISCCP is for the International Satellite Cloud Climatology 679 

Project (Rossow and Schiffer 1999). ERBE is for Earth Radiation Budget Experiment 680 

(Barkstrom et al. 1989). CMAP is for the CPC Merged Analysis of Precipitation (Xie and 681 

Arkin 1997). 682 

Variable Description Reference Period 

SLP      Sea level pressure   JRA25   1979-1999  

U200     200-hPa zonal wind   JRA25   1979-1999  

U850     850-hPa zonal wind     JRA25   1979-1999  

V200     200-hPa meridional wind    JRA25   1979-1999  

V850     850-hPa meridional wind    JRA25   1979-1999  

T300     300-hPa air temperature     JRA25   1979-1999  

T500     500-hPa air temperature    JRA25   1979-1999  

T600     600-hPa air temperature      JRA25   1979-1999  

T700     700-hPa air temperature  JRA25   1979-1999  

T850     850-hPa air temperature   JRA25   1979-1999  

Q300     300-hPa Specific humidity  JRA25   1979-1999  

Q600     600-hPa Specific humidity  JRA25   1979-1999  

Q700     700-hPa Specific humidity  JRA25   1979-1999  

Q850     850-hPa Specific humidity  JRA25   1979-1999  

LH       Surface latent heat flux  JRA25   1979-1999  

SH       Surface sensible heat flux  JRA25   1979-1999  

SAT      Surface (2m) air temperature  JRA25   1979-1999  

SST      Sea surface temperature  HadSST2   1979-1999  

CloudC   Cloud cover   ISSCP-D2   1984-1999  

OLR      Outgoing longwave radiation  ERBE   Feb. 1985 - Feb. 1990  

SWTOA    Reflected shortwave radiation  ERBE   Feb. 1985 - Feb. 1990  

Prec     Total precipitation  CMAP     1979-1999  
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